متن کامل رساله دکتری رشته : شیمی

گرایش :شیمی آلی

عنوان : تهیه، شناسایی و استفاده از کاتالیست­های نانو ذرات زیرکونیوم فسفات و برخی کاتیون­های (Cu2+, Zn2+) تعویض یون شده­ی آن در برخی واکنش­های شیمی آلی   

دانشگاه صنعتی اصفهان

دانشکده شیمی

تهیه، شناسایی و استفاده از کاتالیست­های نانو ذرات زیرکونیوم فسفات و برخی کاتیون­های (Cu2+, Zn2+) تعویض یون شده­ی آن در برخی واکنش­های شیمی آلی


رساله دکتری شیمی آلی

 

استاد راهنما

پروفسور عبدالرضا حاجی‌پور

 

1393

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

فهرست مطالب

عنوان صفحه

فهرست مطالب………………………………………………………………………………………………………… هشت

چکیده………………………………………………………………………………………………………………… …….1

فصل اول مقدمه. 2

1-1- مفهوم کاتالیز شدن. 2

1-2- نانوکاتالیست­ها و نانو ذرات کاتالیستی. 4

1-2-1- نانوکاتالیست با رفتار همگن. 5

1-2-2- نانوکاتالیست­های با رفتار ناهمگن. 5

1-2-3- ویژگی­های نانوکاتالیست 5

1-2-4- روش­های استفاده از نانوکاتالیست فلزی 8

1-3- زیرکونیوم فسفات­ها 11

1-3-1- روش­های تولید زیرکونیوم فسفات.. 12

1-4- فعالیت کاتالیستی زیرکونیوم فسفات.. 17

1-4-1- اکسایش بایر-ویلیگر. 17

1-4-2- تراکم پکمن. 18

1-4-3-سنتز مونواتانول آمید 18

1-4-4- آلکیلاسیون فریدل-کرافتس.. 19

1-4-5- آبگری از قندها 19

 

1-4-6- تراکم کلایزن-اشمیت.. 19

1-4-7- محافظت از گروه کربونیل. 20

1-5-زیرکونیوم فسفات تعویض یون شده 20

1-5-1- روش تولید زیرکونیوم فسفات تعویض یون شده 21

1-6- فعالیت کاتالیستی زیرکونیوم فسفات تعویض یون شده 21

1-6-1- واکنش­های اکسایش.. 21

1-6-2- واکنش فریدل-کرافتس.. 22

1-6-3- رفع محافظت از اترهای فنولی. 22

1-6-4- تراکم پِرینس.. 23

1-7- آسیلال­ها (1،1-دی استات­ها) 23

1-7-1 روش­های سنتز آسیلال­ها 23

1-8- استیله کردن الکل­ها 26

1-8-1- روش­های استیله کردن. 26

1-9- آریل H14-دی­بنزو[a,j] زانتن­ها 29

1-9-1- روش­های سنتز دی­بنزو زانتن­ها 30

1-10- 3، 4- دی هیدروپیریمیدین-2-(H1)-اُن (واکنش بیجینلی) 32

1-10-1- روش­های سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن. 32

1-11- آلکیلاسیون فریدل-کرافتس.. 35

1-11-1- روش­های سنتز سیکلوهگزیل فنول

35

1-11-2- روش­های سنتز ترشیو-بوتیل فنول. 36

1-12- اکسایش الکل­ها 37

1-12-1- روش­های اکسایش انتخابی الکل­ها 37

2- 1- دستگاه‌ها و تجهیزات.. 39

2-2- نرم افزارهای استفاده شده 41

2- 3- مواد اولیه (تهیه و خالص‌سازی) 41

2-4- تهیه نانو ذرات زیرکونیوم فسفات.. 41

2-4-1- تهیه نانو ذرات زیرکونیوم فسفات با استفاده از پلی وینیل الکل (PVA) 42

2-4-2- تهیه نانو ذرات زیرکونیوم فسفات با استفاده از پلی وینیل پیرولیدون (PVP) 42

2-4-3- روش کلی فرایند تجدیدپذیری کاتالسیت نانو ذرات زیرکونیوم فسفات.. 43

2-5- تهیه کاتالیست زیرکونیوم فسفات به روش تقطیر برگشتی. 43

2-6- تهیه کاتالسیت مس زیرکونیوم فسفات (ZPCu) 43

2-6-1- روش کلی فرایند تجدیدپذیری کاتالسیت مس زیرکونیوم فسفات.. 44

2-7- تهیه کاتالسیت روی زیرکونیوم فسفات (ZPZn) 44

2-7-1- روش کلی فرایند تجدیدپذیری کاتالسیت روی زیرکونیوم فسفات.. 44

1-8- آلکیلاسیون فنول به وسیله­ی سیکلوهگزانول توسط نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال. 44

1-9- روش کلی آلکیلاسیون فنول به وسیله­ی سیکلوهگزن توسط نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال. 45

 

1-10- روش کلی آلکیلاسیون فنول به وسیله­ی 2-هگزانول توسط نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال. 45

1-11- روش آلکیلاسیون فنول به وسیله­ی ترشیو-بوتانول به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال  45

2-12- روش کلی تهیه آسیلال­ها به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال. 46

2-12-1- روش تهیه 1،1- دی استوکسی -1- (4- نیتروفنیل) متان به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال، یک سنتز نمونه. 46

2-13- روش کلی استیله کردن الکل­ها و فنول­ها به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال. 46

2-13-1- روش تهیه 4- متیل فنیل استات به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال، یک سنتز نمونه  47

2-13-2- روش تهیه استیل سالیسیلیک اسید به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال، یک سنتز نمونه  47

2-14- روش کلی سنتز H14-دی­بنزو[a,j] زانتن­ها به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال. 48

2-14-1- روش تهیه 14-(4-کلروفنیل)-H14- دی­بنزو[a,j] زانتن به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال، یک سنتز نمونه. 48

2-15- روش کلی تهیه سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن­ها به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال  49

2-15-1- روش تهیه 5-اتوکسی کربونیل -6-متیل- 4- (3-نیتروفنیل) 3، 4- دی هیدروپیریمیدین -2-(H1)-اُن­ها به­وسیله­ی نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال، یک سنتز نمونه. 49

2-16- روش کلی اکسایش الکل­ها به­وسیله­ی مس زیرکونیوم فسفات.. 49

2-16-1- روش اکسایش 4-نیترو بنزیل الکل به­وسیله­ی مس زیرکونیوم فسفات، یک سنتز نمونه. 50

2-17- روش کلی اکسایش الکل­ها به­وسیله­ی روی زیرکونیوم فسفات.. 50

2-18- روش کلی استیله کردن الکل­ها و فنول­ها به­وسیله­ی مس زیرکونیوم فسفات در شرایط بدون حلال. 51

2-19- روش کلی استیله کردن الکل­ها و فنول­ها به­وسیله­ی روی زیرکونیوم فسفات در شرایط بدون حلال. 51

 

2-20- شناسائی طیفی فرآورده­ها 51

2-20-1- شناسائی طیفی فرآورده­های واکنش آلکیلاسیون. 51

2-20-2- شناسائی طیفی آسیلال­ها 52

2-20-3- شناسائی طیفی فرآورده­های واکنش استیله کردن الکل­ها و فنول­ها 54

2-20-4- شناسائی طیفی فرآورده­های H14-دی­بنزو[a,j] زانتن­ها 56

2-20-5- شناسائی طیفی فرآورده­های سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن­ها 58

2-20-6- شناسائی طیفی فرآورده­های اکسایش الکل­ها 60

3-1- شناسایی نانو ذرات زیرکونیوم فسفات.. 62

3-1-1- آنالیز عنصری نانو ذرات زیرکونیوم فسفات (ICP-OES و EDX) 63

3-1-2- آنالیز طیف FT-IR نانو ذرات زیرکونیوم فسفات.. 64

3-1-3- آنالیز پراش پرتو ایکس (XRD) نانو ذرات زیرکونیوم فسفات.. 65

3-1-4- اندازه­گیری مساحت سطح نانو ذرات زیرکونیوم فسفات.. 65

3-1-5- بررسی خصوصیات اسیدی سطح نانو ذرات زیرکونیوم فسفات.. 66

3-1-6- بررسی خصوصیات سطح نانو ذرات زیرکونیوم فسفات توسط میکروسکوپ الکترونی روبشی (SEM) 69

3-1-7- بررسی خصوصیات سطح نانو ذرات زیرکونیوم فسفات توسط میکروسکوپ الکترونی عبوری (TEM) 69

3-2- بررسی شرایط واکنش آلکیلاسیون فنول به وسیله سیکلوهگزانول توسط نانو ذرات زیرکونیوم فسفات.. 70

3-2-1- بررسی تاثیر مقدار کاتالیست.. 71

3-2-2- بررسی تاثیر زمان. 74

 

3-2-3- بررسی تاثیردما 75

3-2-3- بررسی تاثیر نسبت مولی واکنش­دهنده­ها 76

3-2-4- بررسی تجدیدپذیری کاتالیست.. 77

3-2-5 بررسی آلکیلاسیون فنول و سیکلوهگزن توسط زیرکونیوم فسفات.. 79

3-2-6- بررسی مکانیسم واکنش.. 80

3-2-7- آلکیلاسیون برخی مشتقات فنول. 81

3-2-8- مقایسه فعالیت کاتالیست­ها در واکنش آلکیلاسیون فنول با سیکلوهگزانول. 82

3-3- بررسی شرایط واکنش آلکیلاسیون فنول به وسیله ترشیو-بوتانول توسط نانو ذرات زیرکونیوم فسفات.. 83

3-3-1- بررسی تاثیر مقدار کاتالیست.. 84

3-3-2- بررسی تاثیر زمان. 85

3-2-3- بررسی تاثیردما 86

3-2-3- بررسی تاثیر نسبت مولی واکنش­دهنده­ها 86

3-2-4- بررسی تجدیدپذیری کاتالیست.. 87

3-2-5- آلکیلاسیون برخی مشتقات فنول. 88

3-2-7- مقایسه فعالیت کاتالیستهای مختلف در واکنش آلکیلاسیون فنول با ترشیو-بوتانول. 89

3-4 تهیه آسیلال­ها توسط نانو ذرات زیرکونیوم فسفات در شرایط بدون حلال. 90

3-4-1- مقایسه فعالیت کاتالیست­های مختلف در واکنش تهیه آسیلال­ها 95

 

3-5-1- مقایسه فعالیت کاتالیست­های مختلف در واکنش استیله کردن فنول. 99

3-6- سنتز H14-دی بنزو[a,j] زانتن­ها 101

3-6-1- مقایسه فعالیت کاتالیست­های مختلف در واکنش سنتز H14-دی­بنزو[a,j] زانتن­ها 105

3-7- سنتز4،3-دی هیدروپیریمیدین-2-(H1)-اُن­ها. 106

3-7-1- مقایسه فعالیت کاتالیست­های مختلف در واکنش سنتز 4،3-دی هیدروپیریمیدین-2-(H1)-اُن­ها 111

3-8- شناسایی کاتالیست مس و روی زیرکونیوم فسفات.. 112

3-8-1- آنالیز عنصری روی و مس زیرکونیوم فسفات (ICP-OES و EDX) 113

3-8-2- آنالیز پراش پرتو ایکس (XRD) روی و مس زیرکونیوم فسفات.. 114

3-8-3- اندازه­گیری مساحت سطح روی و مس زیرکونیوم فسفات.. 115

3-8-4- بررسی خصوصیات سطح روی و مس زیرکونیوم فسفات توسط میکروسکوپ الکترونی روبشی (SEM) 116

3-8-5- بررسی خصوصیات سطح مس زیرکونیوم فسفات توسط میکروسکوپ الکترونی عبوری (TEM) 117

3-9 اکسایش انتخابی الکل­ها توسط روی و مس زیرکونیوم فسفات.. 118

3-9-1- مقایسه فعالیت کاتالیست­های مختلف در واکنش اکسایش الکل­ها 124

3-10- استیله کردن الکل­ها و فنول­ها توسط روی و مس زیرکونیوم فسفات در شرایط بدون حلال. 125

 

فهرست شکل­ها
عنوان صفحه

شکل (1- 1) مقایسه واکنش­های کاتالیز شده و کاتالیز نشده 2

شکل (1- 2) کاتالیز شدن همگن و ناهمگن 3

شکل (1- 3) نانوکاتالیست همانند پلی بین کاتالیست همگن و ناهمگن. 4

شکل (1- 4) بیشینه فعالیت شیمیایی کاتالیست ناهمگن، در ابعاد نانو است 6

شکل (1- 5) براساس محاسبات رایانه­ای، خوشه­ی پلاتین با 611 اتم (با قطر حدود 3 نانومتر)، بیشترین فعالیت را دارد 6

شکل (1- 6) ویژگی­های اصلی نانوکاتالیست.. 8

شکل (1- 7) ساختار آلفا زیرکونیوم فسفات. 12

شکل (1-8) تصاویر SEM آلفا زیرکونیوم فسفات تهیه شده به روش تقطیر برگشتی، برای محلول های الف) 3، ب) 6، ج) 9 و د)12 مولار اسید فسفریک 13

شکل (1-9) تصاویر SEM آلفا زیرکونیوم فسفات تهیه شده به روش گرمایی برای محلول های الف) 3، ب) 6، ج) 9 و د)12 مولار اسید فسفریک 14

شکل (1-10) تصاویر SEM آلفا زیرکونیوم فسفات تهیه شده به روش یون فوئورید برای محلول هایی با نسبت F/Zr4+ الف) 1، ب) 2، ج) 3 و د) 4 15

شکل (1-11) تصویر TEM زیرکونیوم فسفات متخلخل 16

شکل (1-12) تصویر TEM زیرکونیوم فسفات متخلخل با تابش ریزموج 16

شکل (1-13) تصویر SEM زیرکونیای اصلاح شده با اسید فسفریک 17

شکل (1-14) افزایش فاصله بین صفحات زیرکونیوم فسفات در اثر تعویض یون. 21

 

شکل (3-1) برهمکنش بین زنجیرهای پلیمری و زیرکونیوم فسفات 63

شکل (3-2) طیف SEM-EDX مر بوطه به کاتالیست ZPA. شکل سمت چپ مربوط به تصوی SEM زیرکونیوم فسفات می­باشد که پرتو ایکس بر روی مستطیل نشان داده شده متمرکز شده است.. 64

شکل (3-3) طیف FT-IR نانو ذرات زیرکونیوم فسفات الف) ZPA و ب) ZPP. 64

شکل (3-4) پراش پرتو ایکس (XRD) نانو ذرات زیرکونیوم فسفات الف) ZPA و ب) ZPP. 65

شکل (3-5) تک دمای جذب و واجذب نیتروژن برای نانو ذرات زیرکونیوم فسفات الف) ZPA و ب) ZPP. 66

شکل (3-6) نمودار واجذب برنامهریزی شده­ی دمایی آمونیاک (TPD-NH3) برای نانو ذرات زیرکونیوم فسفات.. 67

شکل (3-7) نمودار FT-IR واجذب پیریدین (Py-FTIR) برای نانو ذرات زیرکونیوم فسفات.. 68

شکل (3-8) تصویر میکروسکوپ الکترونی روبشی (SEM) نانو ذرات زیرکونیوم فسفات الف) ZPA و ب) ZPP. 69

شکل (3-9) تصویر میکروسکوپ الکترونی عبوری (TEM) نانو ذرات زیرکونیوم فسفات الف) ZPA و ب) ZPP. 70

شکل (3-10) کروماتوگرام واکنش آلکیلاسیون فنول توسط سیکلوهگزانول. 70

شکل (3-11) بررسی تاثیر مقدار کاتالیست بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها، الف) ZPA و ب) ZPP. 72

شکل (3-12) مکانیسم لانگمویر-هینشلوود (LH) و اِلی-ریدیل (ER). 72

شکل (3-13) بررسی تاثیر زمان بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها، الف) ZPA و ب) ZPP. 74

شکل (3-14) بررسی تاثیر دما بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها، الف) ZPA و ب) ZPP. 75

شکل (3-15) بررسی تاثیر نسبت مولی واکنش­دهنده­ها بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها 76

شکل (3-16) بررسی تجدیدپذیری کاتالیست زیرکونیوم فسفات الف) ZPA و ب) ZPP. 77

شکل (3-17) طیف FT-IR کاتالیست ZPA قبل و پس از استفاده­ی پنجم 78

شکل (3-18) پراش پرتو ایکس (XRD) مربوط به کاتالیست ZPA قبل و پس از استفاده­ی پنجم 78

 

شکل (3-19) نمودار واجذب برنامه­ ریزی شده­ی دمایی آمونیاک (TPD-NH3) برای کاتالیست ZPA. 79

شکل (3-20) تصاویر الف) SEM و ب) TEM کاتالیست ZPA پس از استفاده­ی پنجم 79

شکل (3-21) کروماتوگرام واکنش آلکیلاسیون فنول توسط ترشیو-بوتانول. 83

شکل (3-22) بررسی تاثیر مقدار کاتالیست (ZPA) بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها 84

شکل (3-23) بررسی تاثیر زمان بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها 85

شکل (3-24) بررسی تاثیر دما بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها 86

شکل (3-25) بررسی تاثیر نسبت مولی واکنش­دهنده­ها بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها 87

شکل (3-26) بررسی تجدیدپذیری کاتالیست بر روی میزان تبدیل فنول و انتخابگری فرآورده­ها 87

شکل (3-27) طیف EDX مر بوطه به کاتالیست ZPCu. 113

شکل (3-28) طیف SEM-EDX مربوطه به کاتالیست ZPZn. شکل سمت چپ مربوط به تصوی SEM روی زیرکونیوم فسفات می­باشد که پرتو ایکس بر روی مستطیل نشان داده شده متمرکز شده است.. 114

شکل (3-29) پراش پرتو ایکس (XRD) مس زیرکونیوم فسفات (وسط) و روی زیرکونیوم فسفات(بالا). 114

شکل (3-30) تک دمای جذب و واجذب نیتروژن برای نانو ذرات زیرکونیوم فسفات الف) ZPCu و ب) ZPZn. 115

شکل (3-31) تصاویر میکروسکوپ الکترونی روبشی (SEM) 116

شکل (3-32) تصاویر میکروسکوپ الکترونی عبوری (TEM) مس زیرکونیوم فسفات (بزرگنمایی­های متفاوت) 117

شکل (3-33) تصاویر میکروسکوپ الکترونی روبشی (SEM) کاتالیست­ها بعد از آزمایش پنجم، الف) ZPCu و ب) ZPZn123

شکل (3-34) مقایسه پراش پرتو ایکس (XRD) کاتالیست­ها قبل و بعد از استفاده، الف )ZPCu و ب) ZPZn. 124

شکل (4-1) طیف جرمی ترکیب 2-سیکلوهگزیل­فنول. 130

شکل (4-2) طیف جرمی ترکیب 4-سیکلوهگزیل­فنول. 131

 

شکل (4-3) طیف جرمی ترکیب 2،4-دیسیکلوهگزیل­فنول. 132

شکل (4-4) طیف جرمی ترکیب 2-ترشیو-بوتیل­فنول. 133

شکل (4-5) طیف جرمی ترکیب 4- ترشیو-بوتیل­فنول. 134

شکل (4-6) طیف جرمی ترکیب 2،4-دیترشیو-بوتیل­فنول. 135

شکل (4-7) طیف جرمی ترکیب 2-(2-هگزیل)فنول. 136

شکل (4-8) طیف جرمی ترکیب 4-(2-هگزیل)فنول. 136

شکل (4-9) طیف جرمی ترکیب 4-(3-هگزیل)فنول. 136

شکل (4-10) طیف FT-IR ترکیب 1،1 -دی استوکسی-1-(2،6 -دی کلروفنیل(متان. 137

شکل (4-11) طیف H-NMR1 ترکیب 1،1 -دی استوکسی-1-(2،6 -دی کلروفنیل(متان (CDCl3) 137

شکل (4-12) طیف FT-IR ترکیب 1،1 -دی استوکسی-1-(4-کلروفنیل(متان. 138

شکل (4-13) طیف H-NMR1 ترکیب 1،1 -دی استوکسی-1-(4-کلروفنیل(متان (CDCl3) 138

شکل (4-14) طیف FT-IR ترکیب 1،1 -دی استوکسی-1-(4-نیتروفنیل(متان. 139

شکل (4-15) طیف H-NMR1 ترکیب 1،1 -دی استوکسی-1-(4-نیتروفنیل(متان (CDCl3) 139

شکل (4-16) طیف جرمی ترکیب استوکسی بنزن. 140

شکل (4-17) طیف FT-IR ترکیب استوکسی بنزن. 140

شکل (4-18) طیف H-NMR1 ترکیب استوکسی بنزن (CDCl3) 140

شکل (4-19) طیف جرمی ترکیب 1-استوکسی-4-متیل بنزن. 141

شکل (4-20) طیف FT-IR ترکیب 1-استوکسی-4-متیل بنزن. 141

 

شکل (4-21) طیف H-NMR1 ترکیب 1-استوکسی-4-متیل بنزن (CDCl3) 141

شکل (4-22) طیف جرمی ترکیب -1استوکسی-2-ترشیو-بوتیل بنزن. 142

شکل (4-23) طیف FT-IR ترکیب -1استوکسی-2-ترشیو-بوتیل بنزن. 142

شکل (4-24) طیف H-NMR1 ترکیب 1-استوکسی-4-متیل بنزن (CDCl3) 142

شکل (4-25) طیف جرمی ترکیب 2-استوکسی-بنزوییک اسید 143

شکل (4-26) طیف FT-IR ترکیب 2-استوکسی-بنزوییک اسید 143

شکل (4-27) طیف H-NMR1 ترکیب 2-استوکسی-بنزوییک اسید (CDCl3) 143

شکل (4-28) طیف جرمی ترکیب -3متیل بوتیل استات.. 144

شکل (4-29) طیف FT-IR ترکیب -3متیل بوتیل استات.. 144

شکل (4-30) طیف H-NMR1 ترکیب 3-متیل بوتیل استات (CDCl3) 144

شکل (4-31) طیف FT-IR ترکیب -1استوکسی-2،4-دی متیل بنزن. 145

شکل (4-32) طیف H-NMR1 ترکیب -1استوکسی-2،4-دی متیل بنزن (CDCl3) 145

شکل (4-33) طیف FT-IR ترکیب -1استوکسی-2،6-دی متیل بنزن. 146

شکل (4-34) طیف H-NMR1 ترکیب -1استوکسی-2،6-دی متیل بنزن (CDCl3) 146

شکل (4-35) طیف جرمی ترکیب 4-کلروبنزآلدهید 147

شکل (4-36) طیف FT-IR ترکیب 4-کلروبنزآلدهید 147

شکل (4-37) طیف H-NMR1 ترکیب 4-کلروبنزآلدهید (CDCl3) 147

شکل (4-38) طیف جرمی ترکیب 4-سیانوبنزآلدهید 148

 

شکل (4-39) طیف FT-IR ترکیب 4-سیانوبنزآلدهید 148

شکل (4-40) طیف H-NMR1 ترکیب 4-سیانوبنزآلدهید (CDCl3) 148

شکل (4-41) طیف جرمی ترکیب 4-متیل بنزآلدهید 149

شکل (4-42) طیف FT-IR ترکیب 4-متیل بنزآلدهید 149

شکل (4-43) طیف H-NMR1 ترکیب 4-متیل بنزآلدهید (CDCl3) 149

شکل (4-44) طیف جرمی ترکیب 4-متوکسی بنزآلدهید 150

شکل (4-45) طیف FT-IR ترکیب 4-متوکسی بنزآلدهید 150

شکل (4-46) طیف H-NMR1 ترکیب 4-متوکسی بنزآلدهید (CDCl3) 150

شکل (4-47) طیف جرمی ترکیب 4-هیدروکسی بنزآلدهید 151

شکل (4-48) طیف FT-IR ترکیب 4-هیدروکسی بنزآلدهید 151

شکل (4-49) طیف H-NMR1 ترکیب 4-هیدروکسی بنزآلدهید (CDCl3) 151

شکل (4-50) طیف FT-IR ترکیب 14-(4-کلروفنیل)- H14-دی بنزو[a,j] زانتن. 152

شکل (4-51) طیف H-NMR1 ترکیب 14-(4-کلروفنیل)- H14-دی بنزو[a,j] زانتن (CDCl3) 152

شکل (4-52) طیف FT-IR ترکیب 14-(2-کلروفنیل)- H14-دی بنزو[a,j] زانتن. 153

شکل (4-53) طیف H-NMR1 ترکیب 14-(2-کلروفنیل)- H14-دی بنزو[a,j] زانتن (CDCl3) 153

شکل (4-54) طیف FT-IR ترکیب 4-(4-کلرو فنیل)-5-اتوکسی کربونیل-6-متیل-4،3-دی هیدروپیریمیدین-2-(H1)-اُن. 154

شکل (4-55) طیف H-NMR1 ترکیب 4-(4-کلرو فنیل)-5-اتوکسی کربونیل-6-متیل-4،3-دی هیدروپیریمیدین-2-(H1)-اُن (CDCl3) 154

 

 

شکل (4-56) طیف FT-IR ترکیب 4-(2-کلرو فنیل)-5-اتوکسی کربونیل-6-متیل-4،3-دی هیدروپیریمیدین-2-(H1)-اُن. 155

شکل (4-57) طیف H-NMR1 ترکیب 4-(2-کلرو فنیل)-5-اتوکسی کربونیل-6-متیل-4،3-دی هیدروپیریمیدین-2-(H1)-اُن (CDCl3) 155

 

فهرست شماها
عنوان صفحه

شمای (1- 1) استفاده از گروه آلی دوپامین به عنوان واسطه­ی اتصال برای تثبیت نانو ذرات پالادیم 9

شمای (1- 2) اتصال نانوذره­ی مغناطیسی به ترکیب کمپلکس.. 10

شمای (1-3) اکسایش بایر-ویلیگر کتون به لاکتون 18

شمای (1-4) واکنش اکسایش بایر-ویلیگر 4-متوکسی بنزآلدهید به استر مربوطه 18

شمای (1-5) واکنش تراکم پکمن 18

شمای (1-6) سنتز N-(2-هیدروکسی اتیل)استئارآمید 19

شمای (1-7) واکنش فریدل-کرافتس در حضور کاتالیست زیرکونیوم فسفات متخلخل 19

شمای (1-8) واکنش آبگیری از زایلوز در حضور کاتالیست زیرکونیوم فسفات 19

شمای (1-9) واکنش تراکم کلایزن-اشمیت 20

شمای (1-10) واکنش محافظت از گروه کربونیل 20

شمای (1-11) فرایند تعویض یون در زیرکونیوم فسفات.. 21

شمای (1-12) اکسایش سیکلوهگزن 22

شمای (1-13) اکسایش پروپان 22

شمای (1-14) اکسایش پروپان 22

شمای (1-15) اکسایش پروپان 23

شمای (1-16) واکنش تراکم پرینس برای بتا-پینن. 23

 

شمای (1-17) واکنش تهیه 1،1-دی استات در حضور زئولیت.. 24

شمای (1-18) واکنش تهیه 1،1-دی استات در حضور PEG-SO3H.. 24

شمای (1-19) واکنش تهیه 1،1-دی استات در حضور ZrCl4 24

شمای (1-20) واکنش تهیه 1،1-دی استات در حضور P2O5/Al2O3 24

شمای (1-21) واکنش تهیه 1،1-دی استات در حضور سولفامیک اسید 25

شمای (1-22) واکنش تهیه 1،1-دی استات در حضور SBSSA 25

شمای (1-23) واکنش تهیه 1،1-دی استات در حضور روتنیوم کلرید 25

شمای (1-24) واکنش تهیه 1،1-دی استات در حضور SiO2-OSO3H.. 25

شمای (1-25) واکنش تهیه 1،1-دی استات در حضور کبالت برمید 26

شمای (1-26) واکنش تهیه 1،1-دی استات در حضور PS/TiCl4 26

شمای (1-27) واکنش استیله کردن الکل­ها در حضور کلرید روی 26

شمای (1-28) واکنش استیله کردن الکل­ها در حضور سریم تریفلات.. 27

شمای (1-29) واکنش استیله کردن الکل­ها در حضور زیرکونیل تریفلات.. 27

شمای (1-30) واکنش استیله کردن الکل­ها در حضور مایع یونی [Hmim]HSO4 27

شمای (1-31) واکنش استیله کردن الکل­ها در حضور ساخارین سولفونه شده 27

شمای (1-32) واکنش استیله کردن الکل­ها در حضور نافیون–H.. 28

شمای (1-33) واکنش استیله کردن الکل­ها در حضور کلرید روی 28

شمای (1-34) واکنش استیله کردن الکل­ها در حضور آلومینیوم هیدروژن سولفات.. 28

 

شمای (1-35) واکنش استیله کردن الکل­ها در حضور Cp2ZrCl2 28

شمای (1-36) واکنش استیله کردن الکلها در حضور H3PW12O4 29

شمای (1-37) واکنش استیله کردن الکل­ها در حضور کاتالسیت یتریا-زیرکونیا 29

شمای (1-38) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور HClO4-SiO2 30

شمای (1-39) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور 30

شمای (1-40) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور حضور سولفامیک اسید 30

شمای (1-41) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور سلیکا سولفوریک اسید 31

شمای (1-42) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور سلولوز سولفوریک اسید 31

شمای (1-43) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور PW.. 31

شمای (1-44) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور SiO2-PW 31

شمای (1-45) واکنش سنتز H14-دی­نزو[a,j] زانتن در حضور ZnO NPs 32

شمای (1-46) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور Fe(HSO4)3 32

شمای (1-47) واکنش سنتز H14-دی­بنزو[a,j] زانتن در حضور HBF4-SiO2 32

شمای (1-48) واکنش سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن در حضور SBSSA. 33

شمای (1-49) واکنش سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن در حضور مایع یونی 33

شمای (1-50) واکنش سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن در حضور گرافیت.. 33

شمای (1-51) واکنش سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن در حضور بد 34

شمای (1-52) واکنش سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن در حضورCuS NPs 34

 

شمای (1-53) واکنش سنتز 3،4- دی هیدروپیریمیدین-2-(H1)-اُن در حضور Cu(OTF)2 34

شمای (1-54) واکنش سنتز سیکلوهگزیل فنول در حضور زئولیت HY. 35

شمای (1-55) واکنش سنتز سیکلوهگزیل فنول در حضور اسید فسفریک 36

شمای (1-56) واکنش سنتز سیکلوهگزیل فنول در حضور زیرکونیا سولفاته 36

شمای (1-57) واکنش سنتز ترشیو-بوتیل فنول در حضور زیرکونیا سولفاته 36

شمای (1-58) واکنش سنتز ترشیو-بوتیل فنول در حضور مایع یونی. 36

شمای (1-59) واکنش سنتز ترشیو-بوتیل فنول در حضور PW/Al-MCM-41. 37

شمای (1-60) واکنش اکسایش الکل­ها در حضور TM4PyP 37

شمای (1-61) واکنش اکسایش الکل­ها در حضور برمید مس 38

شمای (1-62) واکنش اکسایش الکل­ها در حضور برمید روی 38

شمای (1-63) واکنش اکسایش الکل­ها در حضور VPO. 38

شمای( 3-1) نحوه تولید نانو ذرات زیرکونیوم فسفات.. 62

شمای (3-2) استفاده از کاتالیست نانو ذرات زیرکونیم فسفات در واکنش آلکیلاسیون فنول به وسیله سیکلوهگزانول. 70

شمای (3-3) انواع پیوندهای هیدروژنی بین فنول و سیکلوهگزانول با سطح زیرکونیوم فسفات.. 73

شمای (3-4) مکانیسم پیشنهادی برای واکنش آلکیلاسیون فنول با سیکلو هگزانول. 73

شمای (3-5) واکنش فنول با 2-هگزانول. 73

شمای (3-6) استفاده از کاتالیست ZPA در واکنش آلکیلاسیون فنول به وسیله ترشیو-بوتانول. 83

شمای (3-7) مکانیسم پیشنهادی برای واکنش آلکیلاسیون فنول با ترشیو-بوتانول. 84

 

شمای (3-8) واکنش آسیلاسیون آلدهیدها به وسیله­ی استیک انیدرید در حضور نانو ذرات زیرکونیوم فسفات.. 90

شمای (3-9) رزنانس در 4-(دی متیل­آمینو)بنزآلدهید 91

شمای (3-10) گزینش­پذیری بین آلدهید و کتون در تشکیل آسیلال در حضور ZPA. 93

شمای (3-11) گزینش پذیری (اثر الکترونی استخلاف) در تشکیل آسیلال در حضور ZPA. 94

شمای (3-12) مکانیسم پیشنهادی برای تشکیل آسیلال­ها در حضور نانو ذرات زیرکونیوم فسفات. 95

شمای (3-13) واکنش استیله کردن الکل­ها و فنول­ها به وسیله­ی استیک انیدرید در حضور نانو ذرات زیرکونیوم فسفات (ZPA) 96

شمای (3-14) مکانیسم پیشنهادی واکنش استیله کردن الکل­ها و فنول­ها به وسیلهی استیک انیدرید در حضور ZPA. 99

شمای (3-15) واکنش تهیه H14-دی­بنزو[a,j] زانتن در حضور نانو ذرات زیرکونیوم فسفات.. 101

شمای (3-16) مکانیسم پیشنهادی برای سنتز H14-دی­بنزو[a,j] زانتن­ها در حضور کاتالیست ZPA. 105

شمای (3-17) واکنش سنتز 4،3-دی هیدروپیریمیدین-2-(H1)-اُن­ها در حضور کاتالیست ZPA. 107

شمای (3-18) مکانیسم پیشنهادی برای سنتز 4،3-دی هیدروپیریمیدین-2-(H1)-اُن­ها در حضور ZPA. 111

شمای (3-19) نحوه تولید مس زیرکونیوم فسفات.. 112

شمای (3-20) نحوه تولید روی زیرکونیوم فسفات.. 113

شمای (3-21) اکسایش انتخابی الکل­ها به ترکیبات کربونیلی خود در حضور کاتالیست­های ZPCu و ZPZn. 118

شمای (3-22) مکانیسم پیشنهادی برای واکنش اکسایش الکل­ها در حضور ZPCu و ZPZn. 122

شمای (3-23) واکنش استیله کردن الکل­ها و فنول­ها به وسیله­ی استیک انیدرید در حضور کاتالیست ZPCu و ZPZn. 125

شمای (3-24) مکانیسم پیشنهادی واکنش استیله کردن الکل­ها و فنول­ها به وسیله­ی استیک انیدرید در حضور ZPA. 128

 

 

فهرست جدول­ها
عنوان صفحه

جدول(1- 1) مزایا و معایب نانوکاتالیست 7

جدول (2- 1) مواد اولیه اصلی استفاده شده در این رساله به­همراه درجه خلوص آنها و شرکت سازنده 41

جدول (3- 1) نتایج حاصل از آنالیز عنصری نانو ذرات زیرکونیوم فسفات.. 63

جدول (3-2) محاسبه میزان انتخابگری برای هر فرآورده در شرایط بهینه. 71

جدول (3-3) محاسبه میزان تبدیل فنول در شرایط بهینه. 71

جدول (3-4) مقایسه شرایط و نتایج حاصل برای آلکیلاسیون فنول با سیکلوهگزانول و سیکلوهگزن. 80

جدول (3-5) آلکیلاسیون برخی مشتقات فنولی توسط سیکلوهگزانول در حضور کاتالیست ZPA. 81

جدول (3-6) مقایسه شرایط و نتایج حاصل برای آلکیلاسیون فنول با سیکلوهگزانول توسط کاتالیست­های مختلف.. 82

جدول (3-7) آلکیلاسیون برخی مشتقات فنولی با ترشیو-بوتانول در حضور کاتالیست ZPA. 88

جدول (3-8) مقایسه شرایط و نتایج حاصل برای آلکیلاسیون فنول با ترشیو-بوتانول توسط کاتالیست­های مختلف.. 89

جدول (3-9) مقایسه شرایط واکنش برای سنتز 1،1-دی استوکسی-1- فنیل متان توسط نانو ذرات زیرکونیوم فسفات در دمای محیط  91

جدول (3-10) تهیه آسیلال­ها توسط نانو ذرات زیرکونیوم فسفات در دمای محیط و تحت شرایط بدون حلال. 92

جدول (3-11) بررسی تجدیدپذیری کاتالیست ZPA در واکنش تهیه آسیلال از بنزآلدهید 94

جدول (3-12) مقایسه شرایط و نتایج حاصل برای واکنش تهیه آسیلال از بنزآلدهید 95

جدول (3-13) مقایسه شرایط واکنش برای استیله کردن فنول توسط نانو ذرات زیرکونیوم فسفات در دمای 60 درجه سانتیگراد 97

 

جدول (3-14) استیله کردن الکل­ها و فنول­ها توسط ZPA در دمای 60 درجه سانتیگراد و تحت شرایط بدون حلال. 97

جدول (3-15) مقایسه شرایط و نتایج حاصل برای واکنش استیله کردن فنول. 100

جدول (3-16) مقایسه شرایط واکنش برای تهیه H14-دی­بنزو[a,j] زانتن از بنزآلدهید و 2-نفتول توسط ZPA 102

جدول (3-17) سنتز H14-دی­بنزو[a,j] زانتن­ها توسط کاتالیست ZPA در دمای 80 درجه سانتیگراد و تحت شرایط بدون حلال  102

جدول (3-18) بررسی تجدیدپذیری کاتالیست ZPA در واکنش سنتز H14-دی­بنزو[a,j] زانتن از بنزآلدهید و2-نفتول. 105

جدول (3-19) مقایسه شرایط و نتایج حاصل برای سنتز H14-دی­بنزو[a,j] زانتن از بنزآلدهید و 2-نفتول. 105

جدول (3-20) مقایسه شرایط واکنش برای تهیه 4،3-دی هیدروپیریمیدین-2-(H1)-اُن از بنزآلدهید، اتیلاستواستات و اوره توسط ZPA 107

جدول (3-21) سنتز 4،3-دی هیدروپیریمیدین-2-(H1)-اُن­ها توسط کاتالیست ZPA در دمای 100 درجه سانتیگراد و تحت شرایط بدون حلال  108

جدول (3-22) مقایسه شرایط و نتایج حاصل برای سنتز H14-دی­بنزو[a,j] زانتن از بنزآلدهید و 2-نفتول. 111

جدول (3-23) نتایج حاصل از آنالیز عنصری روی و مس زیرکونیوم فسفات. 113

جدول (3-24) مقایسه شرایط واکنش برای اکسایش انتخابی الکلها توسط ZPCuو ZPZn. 119

جدول (3-25) اکسایش الکل­های مختلف توسط ZPCu و ZPZn در شرایط بدون حلال. 120

جدول (3-26) بررسی تجدیدپذیری کاتالیست ZPCu و ZPZn در واکنش اکسایش بنزیل­الکل. 122

جدول (3-27) نتایج حاصل از آنالیز عنصری روی و مس زیرکونیوم فسفات قبل و بعد از استفاده . 122

جدول (3-28) مقایسه شرایط و نتایج حاصل برای اکسایش بنزیل­الکل به بنزآلدهید 124

جدول (3-29) مقایسه شرایط واکنش برای استیله کردن فنول توسط ZPCu و ZPZn در دمای 60 درجه سانتیگراد 125

جدول (3-30) استیله کردن الکل­ها و فنول­ها توسط ZPCu و ZPZn در دمای 60 درجه سانتیگراد و تحت شرایط بدون حلال  126

 

چکیده

در بخش اول این رساله برای اولین بار نانوذرات شش ضلعی زیرکونیوم فسفات با استفاده از شبکه پلیمری با ابعاد حدود 60 نانومتر تولید گردید. آنالیزهای متعددی برای بررسی خصوصیات فیزیکی و شیمیایی کاتالیست تهیه شده صورت پذیرفت. نانوذرات زیرکونیوم فسفات تولید شده خصویات اسیدی قابل توجهی از خود نشان می­دهند. این کاتالیست اسیدی ناهمگن در واکنش­های مختلفی همچون آلکیلاسیون فریدل کرافتس فنول، محافظت از گروه­های هیدرکسیل و کربونیل و واکنش­های چند جزیی مورد استفاده قرار گرفت. کاتالیست تولید شده به راحتی و توسط سانتریفیوژ در انتهای هر واکنش از مخلوط واکنش جدا شده و طی فرایند ساده­ای مجدداً قابل استفاده می­گردد. همچنین، با تعویض پروتون­های اسیدی روی سطح زیرکونیوم فسفات با کاتیون­های مس و روی، دو کاتالیست ناهمگن دیگر تهیه گردید. آنالیزهای مختلفی برای بررسی خصوصیات این کاتالیست­ها نیز صورت گرفت. این دو کاتالیست در واکنش اکسایش انتخابی الکل­ها به آلدهیدها و کتون­ها و محافظت از گروه هیدروکسی در الکل­ها مورد استفاده قرار گرفتند. برای بررسی تجدیدپذیری، در انتهای هر واکنش، این کاتالیست­ها با استفاده از سانتریفیوژ از مخلوط واکنش شدند و بعد از طی فرایند کوتاهی دوباره مورد استفاده قرار گرفتند. این کاتالیست­ها برای چندین بار و بدون از دست دادن ویژگی­های کاتالیستی قابل استفاده مجدد هستند.

 

کلمات کلیدی: زیرکونیوم فسفات، زیرکونیوم فسفات تعویض یون شده، نانوذرات، سنتز ترکیب­های آلی، شیمی سبز.

 

فصل اول

مقدمه

1-1- مفهوم کاتالیز شدن

کاتالیست ترکیبی است که با کاهش انرژی فعالسازی یک واکنش سرعت انجام آن را افزایش می­دهد، بدون آنکه خود در آن واکنش مصرف شود [1]. همانگونه که در شکل (1-1) دیده می­شود، زمانی که کاتالیست در واکنش وجود ندارد، انرژی فعالسازی واکنش بسیار بزرگ است و واکنش به کندی رخ می دهد و یا عملاً واکنشی صورت نمی­گیرد. با افزودن کاتالیست، واکنش از مسیر جدیدی پیش می­رود که انرژی فعالسازی کل کاهش یافته و واکنش به راحتی انجام شود.

شکل (1- 1) مقایسه واکنش­های کاتالیز شده و کاتالیز نشده [1].

با استفاده از کاتالیست­ها امکان سنتز گروه وسیعی از ترکیب­های دارویی، پلیمرها و سوخت­ها وجود دارد که بدون استفاده از کاتالیست­ها قابل انجام نیستند و یا با سرعت کمتری انجام می­شوند. همچنین پدیده­های کاتالیستی، می­تواند نقش عمده­ای را در حل بسیاری از مسایل مربوط به حفظ محیط زیست ایفا کند. غربال­های کاتالیستی در اگزوز اتومبیل­ها، دودکش کارخانه­ها و پساب­های صنعتی و حتی خانگی در جهت حذف مواد سمی و آلوده کننده مورد استفاده قرار می­گیرند [2]. کاتالیست­ها را می­توان به دو گروه همگن[1] و ناهمگن[2] طبقبه­بندی کرد. در کاتالیست­های همگن، کاتالیست و مواد واکنش­دهنده همگی در یک فاز قرار دارند و هیچ مرز مشخصی بین آن­ها نمی­توان در نظر گرفت. فازها می­توانند مایع، جامد و یا گازی باشند. در حالیکه کاتالیست ناهمگن و واکنشگرها در دو فاز مجزا کنار هم قرار دارند. در این فرآیند، واکنش در جایی نزدیک و یا روی سطح بین فازها اتفاق می­افتد. در اکثر موارد، کاتالیست ناهمگن ترکیب جامدی است که از تماس با آن واکنشگرها وارد واکنش می شوند؛ در نتیجه در بسیاری از مواقع از عبارت (کاتالیست تماسی) برای کاتالیست ناهمگن استفاده می­شود [3].

شکل (1- 2) کاتالیز شدن همگن و ناهمگن [2]

فرایندهای زیادی در شیمی وجود دارد که در آنها از کاتالیست­ها برای بدست آوردن فرآورده­های مورد نظر استفاده می­شود. فرایند هابر- بوش[3] یکی از برجسته­ترین فرایندهای کاتالیز شده بصورت ناهمگن است که در آن با استفاده از نیتروژن و هیدروژن، آمونیاک تولید می­شود. با استفاده از این فرایند هر ساله بیش از پانصد میلیون تن کود تولید می­شود [4]. تخمین زده می­شودکه این کودها غذای بیش از 27 درصد از مردم جهان را در قرن گذشته تامین کرده­اند. در صورت عدم توسعه این فرایند، جمعیت جهان در سال 2008 بجای 6 میلییارد، چیزی در حدود 3 میلییارد می­بود [5]. فرایند مونسانتو نیز یکی از مهمترین فرایندهای کاتالیست شده بصورت همگن است که بوسیله آن حدود 2 میلیون تن استیک اسید از متانول در سال تولید می­شود [4]. البته کاتالیست­های ذکر شده می­توانند به صورت کاتالیست­های زیستی[4] نیز وجود داشته باشند. کاتالیست­های زیستی را آنزیم[5] نیز می­نامند. این مواد فوق­العاده پیچیده، فرآیندهای حیاتی مانندگوارش و سنتز سلولی را کاتالیز می‌کنند. عده زیادی از واکنش­های شیمیایی پیچیده که در بدن صورت می‌گیرد و برای حیات ما ضرورت دارد، به علت اثر آنزیم‌ها در دمای بدن امکانپذیر می­باشند. هزاران آنزیم وجود دارند که هر یک وظیفه خاصی را انجام می‌دهند. تحقیق درباره ساختار و عمل آنزیم‌ها، نویدهای فراوانی درباره پیشرفت شناخت عوامل بیماری و مکانیسم فراهم می­نماید.

1-2- نانوکاتالیست­ها و نانو ذرات کاتالیستی

برای آنکه کمبود سطح فعال در کاتالیست­های ناهمگن جبران شود، استفاده از یک بستر [6]در نقش تکیه­گاه کاتالیست، ضروری است. بستر معمولاً یک ساختار متخلخل[7] با سطح فعال بالاست. کاتالیست مناسب، باید سطح فعال زیاد داشته و قابل جداسازی باشد. فناوری نانو، می­تواند سطح فعال بسیار زیادی را برای کاتالیست فراهم آورد. با آنکه سطح­فعال نانوکاتالیست­ها بسیار بالاتر از کاتالیست­های معمولی است، سطح فعال یک نانوکاتالیست همواره از یک کاتالیست همگن پایین­تر است (کاتالیست همگن با انحلال خود در تماس کامل با محتویات واکنش قرار دارد). در مقابل، نانو ذرات کاتالیستی به دلیل ابعاد بزرگ­تر نسبت به ذرات کاتالیست همگن، در محلول واکنش حل نشده و به سادگی قابل جداسازی هستند. سطح فعال زیاد به همراه قابلیت جداسازی کاتالیست در پایان واکنش، از نانوکاتالیست­ها پلی میان کاتالیست­های همگن و ناهمگن ساخته است (شکل1-3) [6].

شکل (1- 3) نانوکاتالیست همانند پلی بین کاتالیست همگن و ناهمگن [6].

ممکن است فرآیند پیچیده تولید برخی از نانوکاتالیست­ها هزینه­بر به حساب بیاید، اما از آنجا که فناوری نانو مقدار کاتالیست، انرژی و زمان مورد نیاز برای انجام واکنش را تقلیل می­دهد، این مورد قابل چشم­پوشی است. نانوکاتالیست­ها را می­توان براساس رفتار آنها به دو دسته­ی نانوکاتالیست با رفتار همگن و نانوکاتالیست با رفتار ناهمگن تقسیم کرد:

1-2-1- نانوکاتالیست با رفتار همگن

در رویکرد نانوکاتالیست همگن، نانو ذرات تهیه شده از فلزات واسطه را به صورت کلویید (ذرات معلق) در مخلوط واکنش پخش می­کنند. معمولاً برای پیشگیری از تجمع نانو ذرات، از یک ماده پایدارکننده[8] استفاده می­شود. یک پایدار کننده خوب، نه تنها نانوکاتالیست را در فرایند کاتالیستیکی (واکنش کاتالیستی) حفظ کرده، در عین حال فعالیت آن را کاهش نمی­دهد. در پایان نیز می­توان نانو ذرات را از فرآورده نهایی واکنش جداسازی نمود. روش کاهش[9] یا همان احیای فلزات (گرفتن الکترون توسط کاتیون فلزی و تبدیل آن به اتم فلزی خنثی) روشی معمول برای سنتز کنترل شده­ی نانوذرات به صورت کلویید در محلول است. فرآیند کاهش به دو صورت شیمیایی و الکتروشیمیایی اجرا می­شود:

1- کاهش شیمیایی: معمول­ترین روش کاهش است که در آن نمک فلز مورد نظر در محلول با عوامل کاهنده مثل الکل­ها و سدیم بوروهیدرید (NaBH4) به اتم فلزی کاهش یافته و تبدیل به نانوذره­ی فلزی می­شود.

2- کاهش الکتروشیمیایی: در این روش بجای یک عامل کاهنده شیمیایی، از الکترون­های انباشته شده بر سطح الکترود استفاده می­شود. در فرآیند کاهش الکتروشیمیایی از یک پیل متشکل از آند (محل اکسایش)، کاتد (محل کاهش) و الکترولیت (محلول نمکی دارای هدایت الکتریکی) استفاده می­شود.

1-2-2- نانوکاتالیست­های با رفتار ناهمگن

کاتالیست ناهمگن به بستر نیاز دارد؛ در نانوکاتالیست­ها، بستر و کاتالیست با هم تشکیل یک نانوکامپوزیت می­دهند که برای رسیدن به بهترین عملکرد مناسب است. به عنوان مثال می­توان به قرار گرفتن کاتالیست طلا بر سطح بستر تیتانیوم­دی­اکسید یا آهن­اکسید اشاره کرد. این نانوکاتالیست­ها به ترتیب به صورت Au/TiO2 و Au/Fe2O3 نشان داده می­شوند. این مواد، کاتالیست­های بسیار خوبی برای اکسایش کربن­منوکسید (آلاینده­ای بسیار مضر و خطرناک) به کربن­دی­اکسید هستند. از آنجا که دی­اکسیدکربن خطر کم­تری دارد، استفاده از این نانوکاتالیست می­تواند خطرات زیست­محیطی مونواکسیدکربن را کاهش می­دهد.

 

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

تعداد صفحه : 222

قیمت : 14700 تومان

———–

——-

پشتیبانی سایت :               info@elmyar.net

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  --

پایان نامه ها

 

مطالب مشابه را هم ببینید

Categories: شیمی

Related Posts

شیمی

پایان نامه ارشد با موضوع:اندازه گیری همزمان درزولامید هیدروکلراید و تیمولول مالئات به روش شبکه عصبی مصنوعی

دانشگاه آزاد اسلامی واحد گچساران   دانشکده علوم پایه گروه شیمی پایان نامه برای دریافت درجه کارشناسی ارشد (( M.Sc )) گرایش: شیمی تجزیه   عنوان: اندازه گیری همزمان درزولامید هیدروکلراید و تیمولول مالئات به Read more…

شیمی

پایان نامه های دانلودی رشته شیمی

پایان نامه ارشد داروسازی: پیش تغلیظ داروی رالوکسیفن به روش میکرواستخراج فاز مایع با استفاده از فیبر توخالی و اندازه گیری دارو به روش HPLC در مقادیر Trace دانلود پایان نامه ارشد : کاهش اثرات Read more…

شیمی

دانلود پایان نامه ارشد : نانو کاتالیستهای پایه سرامیکی (پایه کوردیریتی)

 دانلود متن کامل پایان نامه  نانو کاتالیستهای پایه سرامیکی (پایه کوردیریتی) مطالب مشابه را هم ببینید پایان نامه ارشد:کاربرد میکرو استخراج مایع-مایع پخشی جهت اندازه گیری مقادیر کم پال...دانلود پایان نامه ارشد : سنتز سه جزیی Read more…