داملود پایان نامه ارشد : بررسی اثرات استخلاف آلکیل بر خواص ساختاری و الکترونی پلی¬تیوفن با استفاده از روش¬های آغازین و نظریه تابع چگالی

دانلود متن کامل پایان نامه مقطع کارشناسی ارشد رشته شیمی

عنوان : بررسی اثرات استخلاف آلکیل بر خواص ساختاری و الکترونی پلی¬تیوفن با استفاده از روش¬های آغازین و نظریه تابع چگالی

دانشگاه صنعتی شاهرود

پایان­ نامه کارشناسی ارشد

دانشکده شیمی

گروه شیمی فیزیک

 

بررسی اثرات استخلاف آلکیل بر خواص ساختاری و الکترونی پلی­تیوفن با استفاده از روش­های آغازین و نظریه تابع چگالی

استاد راهنما:

دکتر حسین نیکوفرد

 

استاد مشاور:

دکتر زهرا کلانتر

 

پایان نامه ارشد جهت اخذ درجه کارشناسی ارشد

شهریور 1389

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

چکیده

 

امروزه پلیمر­ها با قابلیت­های فراوان و کاربرد گسترده­ای که دارند بسیاری از جنبه­ های زندگی ما را پوشش داده­اند. يك دسته از اين مواد، پلیمر­های رسانا هستند. در دهه­های اخیر تحقیقات وسیعی در کشف قابلیت­های جدید این پلیمر­ها، بهینه کردن خواص و کاربرد­های نوین آن­ها صورت گرفته است. در این پایان نامه به پلی­تیوفن که یکی از پلیمر­های رسانا­ست توجه کرده­ایم و اثرات استخلاف آلکیل بر خواص ساختاری و الکترونی این پلیمر بررسی شده است. بررسی­های خود را با استفاده از روش­های آغازین و نظریه تابعی چگالی انجام داده­ایم. ساختار كليه مونومر­ها و اليگومر­هاي مورد مطالعه توسط مجموعه پایه   6 -31G** بهينه گرديد. نتایج محاسبات روی مونومر­ها نشان داده است که با اتصال آلکیل به تیوفن، طول پیوند­ها تغییر می­کند اما با افزایش طول استخلاف آلکیل تغییری در هندسه مولکول ایجاد نمی­شود. همچنین در اثر استخلاف تساوی بار در موقعیت­های α و ´α و همچنین β و ´β حلقه مونومر از بین می­رود و چگالی بار در موقعیت­های نزدیک به استخلاف کاهش و در موقعیت­های دورتر افزایش می­یابد. بررسی شکاف انرژی در مونومر­ها نشان داده است که با اتصال گروه آلکیل به تیوفن، شکاف انرژی کوچک می­شود و با افزایش طول استخلاف این شکاف کوچک­تر می­شود اما برای آلکیل­های بزرگ­تر از پروپیل تغییر چندانی در شکاف انرژی به وجود نمی­آید. لذا استخلاف­های متیل، اتیل و پروپیل براي بررسي اليگومر­ها انتخاب شده­اند. ما با مطالعاتی که روی ساختار  الیگومرهای 3- آلکیل تیوفن انجام داده­ایم، پیکربندی HT – HT را برای محاسبات اليگومر­ها انتخاب کردیم. محاسبات انجام گرفته روی الیگومر­های خنثی و رادیکال کاتیون نشان داد که  الیگومر­های رادیکال کاتیون ویژگی­های بسیار بهتری دارند. سیستم مزدوج در آن­ها همگن است و پیچش ندارد که این لازمه رسانایی در یک پلیمر مزدوج است. همچنین مطالعات روی شکاف انرژی نشان داد که با افزایش طول زنجیر اليگومر شکاف کوچکتر می­شود. بررسي نتايج بدست آمده نشان مي­دهد كه با وجود اختلافاتی که در روند شکاف انرژی در الیگومر­های کوچک­تر ديده مي­شود با بزرگ­تر شدن طول زنجير پليمري و سيستم مزدوج، این تفاوت­ها کمتر می­شود و به نظر می­رسد برای الیگومر هاي طويل­تر نوع استخلاف آلكيل اثر چندانی بر شکاف انرژی ندارد. همچنین مطالعات روی پتانسیل یونش اليگومر­هاي 3- آلكيل تيوفن نشان از کاهش پتانسیل یونش با افزایش طول زنجیر دارد.

کلمات کلیدی: پلیمر­های رسانا، آلکیل­تیوفن، اثرات استخلاف، روش­های آغازین، نظریه تابعی چگالی، خواص الكتروني

فهرست مطالب

فصل اول : مقدمه ………………………………………………………………………………………………………………………………. 1

فصل دوم : پليمرهاي رسانا

2-1-تعريف ……………………………………………………………………………………………………………………………………………5

2-2-تاريخچه ………………………………………………………………………………………………………………………………………. 6

2-3-تقويت پليمرهاي رسانا ……………………………………………………………………………………………………………….. 8

2 -3-1- مفهوم تقویت ……………………………………………………………………………………………………………………. 8

2-3-2- ماهیت مواد تقویت کننده …………………………………………………………………………………………………. 9

2-3-3- تقویت شیمیایی ………………………………………………………………………………………………………………… 9

2-3-4- تقویت الکتروشیمیایی ……………………………………………………………………………………………………. 11

2-3-5- برگشت پذیری ………………………………………………………………………………………………………………….11

2-4-روش­هاي تهیه پلیمر­های رسانا…………………………………………………………………………………………………. 12

2-4-1- پلیمر شدن شیمیایی ……………………………………………………………………………………………………… 12

2-4-2- پلیمر شدن الکتروشیمیایی ………………………………………………………………………………………………13

2-5 رسانایی پلیمر­های رسانا ……………………………………………………………………………………………………………. 14

2-5-1- نظریه نوار ………………………………………………………………………………………………………………………… 16

2-5-2- مکانیزم رسانایی پلیمر­های رسانا ……………………………………………………………………………………. 19

2-6-كاربردها ………………………………………………………………………………………………………………………………………20

2-6-1- باتری­های با قابلیت شارژ مجدد ……………………………………………………………………………………… 21

2-6-2- وسایل الکتروکرومیک …………………………………………………………………………………………………….. 21

2-6-3- کاربرد­های پزشکی ………………………………………………………………………………………………………….. 21

2-6-4-حسگر­ها ……………………………………………………………………………………………………………………………. 21

2-6-5- الکترود­های پلیمری ………………………………………………………………………………………………………… 21

2-6-6- انواع مواد هوشمند ………………………………………………………………………………………………………….. 22

2-7-معايب ومزايا ……………………………………………………………………………………………………………………………….22

فصل سوم : پلي(آلکیل­تيوفن)

3-1-تيوفن ………………………………………………………………………………………………………………………………………….24

3-2-پلي­تيوفن …………………………………………………………………………………………………………………………………….25

3-3- پیکربندی پلی­آلکیل­تیوفن­ها …………………………………………………………………………………………………… 25

3-4-مكانيزم الكتروپليمر شدن …………………………………………………………………………………………………………..27

3-4-1- روش شیمیایی ………………………………………………………………………………………………………………….27

3-4-1-1- روش مک­کالو………………………………………………………………………………………………………………. 28

3-4-1-2- روش ریک……………………………………………………………………………………………………………………..28

3-4-1-3- روش پلیمر شدن اکسایشی ……………………………………………………………………………………….. 29

3-4-2- روش الکتروشیمیایی ………………………………………………………………………………………………………..30

3-4- 2- 1- مکانیزم الکتروپلیمر شدن …………………………………………………………………………………….. 31

3- 4- 2- 2- اثر عوامل مختلف بر الکتروپلیمرشدن تیوفن ……………………………………………………….33

فصل چهارم: روش­های محاسباتی

4-1 –شیمی محاسباتی ……………………………………………………………………………………………………………………. 36

4-2-روش­های آغازین ………………………………………………………………………………………………………………………. 37

تقریب بورن اوپنهایمر ……………………………………………………………………………………………………………………….. 37

تقریب LCAO  …………………………………………………………………………………………………………………………………..38

تقریب هارتری – فاک ……………………………………………………………………………………………………………………….. 38

روش میدان خود سازگار ………………………………………………………………………………………………………………….. 38

برهم­کنش آرایشی ……………………………………………………………………………………………………………………………. 40

افزودن توابع قطبش پذیر ………………………………………………………………………………………………………………….. 49

افزودن توابع پخشی …………………………………………………………………………………………………………………………… 50

4–3 نظریه تابعی چگالی …………………………………………………………………………………………………………………. 41

4-4-مجموعه پایه …………………………………………………………………………………………………………………………….. 45

4-5- نرم­افزار­ها …………………………………………………………………………………………………………………………………. 50

4-5-1- هایپرکم …………………………………………………………………………………………………………………………… 51

4-5-2- گوس­ویو ………………………………………………………………………………………………………………………….. 51

4-5-3- گوسین ………………………………………………………………………………………………………………………………52

فصل پنجم : محاسبات و نتايج

5-1-بهينه سازي هندسه مولکول­ها …………………………………………………………………………………………………. 54

5-2-محاسبات مونومر­ها …………………………………………………………………………………………………………………… 56

5-3- محاسبات الیگومر­ها …………………………………………………………………………………………………………………. 60

5-3-1- محاسبات ساختاری..……………….……………………………………………………………………………………..62

5-3-2- محاسبات چگالی بار الکتریکی و چگالی اسپین ………………………………………………………………69

5-3-3- محاسبات الکترونی ……………………………………………………………………………………………………………70

فصل ششم: بحث و نتیجه­گیری

6-1- بررسی مونومر­ها ………………………………………………………………………………………………………………………. 74

6-2-بررسی الیگومر­ها ………………………………………………………………………………………………………………………. 81

6-2-1- آنالیز ساختاری…………………………………………………………………………………………………………………..83

6-2-2- توزیع بار و چگالی اسپین…………………………………………………………………………………………………..90

6-2-3- خواص الکترونی………………………………………………………………………………………………………………….93

آینده­نگری ………………………………………………………………………………………………………………………………………….. 99

منابع …………………………………………………………………………………………………………………………………………………101

 

فهرست شکل­ها

(2-1) الف: سيس-­پلي­استيلن، ب: ترانس- پلي­استيلن ………………………………………………………………………..7

(2-2) اثر غلظت تقويت کننده بر رسانایی پلیمر ……………………………………………………………………………….11

(2-3) مقايسه رسانايي مواد مختلف …………………………………………………………………………………………………..15

(2-4)رسانايي پليمر­هاي رساناي مختلف با مس مقايسه شده است ………………………………………………… 16

(2-5) نوارهاي انرژي در رسانا­ها، نيمه­رسانا­ها و نارسانا­ها ……………………………………………………………….. 17

(2-6) تغييرات زنجير پليمر در اثر تقويت ………………………………………………………………………………………….18

(2-7) در اثر تقويت شكاف نواري باريك­تر مي­شود ……………………………………………………………………………19

(2-8) ايجاد نوارهاي حد واسط در شكاف نواري پليمر­ها ………………………………………………………………… 20

(3-1) انواع دیمر­های احتمالی ………………………………………………………………………………………………………….. 26

(3-2) انواع آرایش تری­مر­ها در تشکیل تری­(آلکیل­تیوفن)………………………………………………………………. 26

(3-3) مکانیزم تولید پلی(آلکیل­تیوفن)……………………………………………………………………………………………….28

(3-4) مکانیزم تولید پلی­(آلکیل­تیوفن) ………………………………………………………………………………………………29

(3-5)مکانیزم روش پلیمر شدن اکسایشی در تولید پلی­(آلکیل­تیوفن) …………………………………………… 30

(5-1) نمایش و نامگذاری ایزومر­های 3- بوتیل­تیوفن ……………………………………………………………………….54

(5-2) نمایش نامگذاری 3-آلکیل­تیوفن ……………………………………………………………………………………………..56

(5-3) نامگذاری شده هگزا آلکیل­تیوفن ……………………………………………………………………………………………..62

(5-4) نامگذاری پیوند­های تریمر 3-آلکیل­تیوفن………………………………………………………………………………..67

(6-1) نمایش طول پیوند­های استخلاف حلقه (R48) در مونومر­های3- آلکیل­تیوفن در سطحB3LYP/6-31G** ……………………………………………………………………………………………………………………75

(6-2) نمایش تغییرات بار الکتریکی در موقعیت اتم (´α) C3  و اتم (α) C2 رادیکال کاتیون­ مونومر­های 3- آلکیل­تیوفن در سطح B3LYP/6-31G**.  ………………………………………………………………………………..77

(6-3) نمایش شکاف نواری مونومر­های 3-آلکیل تیوفن  در سطح HF/6-31G**…………………………78

(6-4) نمایش تغییرات پتانسیل یونش مونومر­های 3-آلکیل­تیوفن در سطح  B3LYP/6-31G**…79

(6-5) ساختار تریمر 3 – متیل تیوفن (الف) رادیکال کاتیون (ب) الیگومر خنثی……………………………81

(6-6) اندازه طول پیوند­های مزدوج در دیمر­های تیوفن، 3- متیل­تیوفن، 3 – اتیل­تیوفن و 3- پروپیل­تیوفن………………………………………………………………………………………………………………………………………….84

(6-7) اندازه طول پیوند­های مزدوج در تریمر­های تیوفن ، 3- متیل­تیوفن، 3 – اتیل­تیوفن، و 3- پروپیل­تیوفن………………………………………………………………………………………………………………………………………….85

(6-8) اندازه طول پیوند­های مزدوج در تترامر­های تیوفن، 3- متیل­تیوفن،3 – اتیل­تیوفن، و 3- پروپیل­تیوفن………………………………………………………………………………………………………………………………………….86

(6-9) اندازه طول پیوند­های مزدوج در پنتامر­های تیوفن ،3- متیل­تیوفن، 3 – اتیل­تیوفن و 3 – پروپیل­تیوفن………………………………………………………………………………………………………………………………………….87

(6-10 ) اندازه طول پیوند­های مزدوج در هگزامر­های تیوفن ، 3- متیل­تیوفن،3 – اتیل­تیوفن و 3 – پروپیل­تیوفن………………………………………………………………………………………………………………………………………….89

(6- 11) نمایش تغییرات بار الکتریکی اتم  C1 بر اساس افزایش طول زنجیر در الیگومر­های3 – آلکیل تیوفن ……………………………………………………………………………………………………………………………………………………92

(6-12) نمایش تغییرات شکاف نواری الیگومرها برحسب افزایش طول زنجیر الیگومر در سطح B3LYP/6-31G**  ……………………………………………………………………………………………………………………………96

(6-13) نمایش تغییرات IP الیگومر­های 3- آلکیل­تیوفن در سطح   B3LYP/6-31G** ……………..98

 

 

فهرست جداول

(4-1) نام، نوع و مخفف تعدادی از روش­های نظریه تابعی چگالی……………………………………………………..45

(5-1) مقایسه خواص ایزومر­های بوتیل­تیوفن……………………………………………………………………………………..55

(5-2) مقایسه خواص ایزومر­های بوتیل­تیوفن  …………………………………………………………………………………..55

(5-3) برخی از پارامتر­های ساختاری مونومر­ها در سطحB3LYP/6-31G**  ……………………………….. 57

جدول 5-4- بار الکتربکی (چگالی اسپین) 3- آلکیل­تیوفن­ها در سطح B3LYP/6-31G**. ……….. 58

(5-5) انرژی­های اوربیتالی  و شکاف نواری در سطح B3LYP/6-31G** ……………………………………… 59

(5-6) محاسبه انرژی الکترونی 3- آلکیل­تیوفن­ها در سطح B3LYP/6-31G** ……………………………..60

(5-7) محاسبه انرژی­های الکترونی سه ساختار متفاوت دیمر­های 3- متیل­تیوفن……………………………61

(5- 8) انرژی­های الکترونی دو ساختار متفاوت تریمر­های- آلکیل­تیوفن……………………………………………61

(5-9) مقادیر طول پیوند­های سیستم مزدوج الیگوتیوفن­ها در سطحB3LYP/6-31G**………………..63

(5-10) مقادیر طول پیوند­های سیستم مزدوج الیگومتیل­تیوفن­ها در سطح B3LYP/6-31G** ………………………………………………………………………………………………………………………………………………………………64

(5-12) مقادیر طول پیوند­های سیستم مزدوج الیگواتیل­تیوفن­ها در سطح B3LYP/6-31G**  …..65

(5-13) مقادیر طول پیوند­های سیستم مزدوج الیگوپروپیل­تیوفن­ها در سطح B3LYP/6-31G** ..66

(5-14) مقادیر زوایای دووجهی در الیگوتیوفن­ها در سطح B3LYP/6-31** ………………………………….67

(5-15) مقادیر زوایای دووجهی در الیگومتیل­تیوفن­ها در سطح  B3LYP/6-31**…………………………68

(5-16) مقادیر زوایای دووجهی در الیگواتیل­تیوفن­ها در سطح B3LYP/6-31** …………………………..68

(5-16) مقادیر زوایای دووجهی در الیگوپروپیل­تیوفن­ها در سطح B3LYP/6-31** ………………………68

(5-17)مقادیر بار الکتریکی (چگالی اسپین) الیگو تیوفن­ها در سطح B3LYP/6-31G** ………………69

(5-18) مقادیر بار الکتریکی (چگالی اسپین) الیگو متیل­تیوفن­ها در سطح B3LYP/6-31G** …….69

(5-19) مقادیر بار الکتریکی (چگالی اسپین) الیگو اتیل­تیوفن­ها در سطح B3LYP/6-31G** ………70

(5-20) مقادیر بار الکتریکی (چگالی اسپین) الیگو پروپیل­تیوفن­ها در سطح B3LYP/6-31G**…..70

(5-21) انرژی اوربیتال­های پیشانی الیگو تیوفن­ها در سطح B3LYP/6-31G** ……………………………71

(5-22) انرژی اوربیتال­های پیشانی الیگو متیل­تیوفن­ها در سطح B3LYP/6-31G** ……………………71

(5-23) انرژی اوربیتال­های پیشانی الیگو اتیل­تیوفن­ها در سطح B3LYP/6-31G** …………………….71

(5-24) انرژی اوربیتال­های پیشانی الیگو پروپیل­تیوفن­ها در سطح B3LYP/6-31G**………………….72

(5-25) انرژی الکترونی الیگوتیوفن­ها در سطح B3LYP/6-31G**…………………………………………………72

(5-26) انرژی الکترونی الیگومتیل­تیوفن­ها در سطح B3LYP/6-31G**…………………………………………72

(5-27) انرژی الکترونی الیگواتیل­تیوفن­ها در سطح B3LYP/6-31G** …………………………………………73

(5-28) انرژی الکترونی الیگوپروپیل­تیوفن­ها در سطح B3LYP/6-31G**……………………………………….73

(6-1) مقایسه شکاف نواری و پتانسیل یونش محاسبه شده برای مونومر­های 3- آلکیل­تیوفن در سطح B3LYP/6-31G**……………………………………………………………………………………………………………………………..77

(6-2) شکاف نواری و پتانسیل یونش محاسبه شده برای الیگوتیوفن­ها در سطحB3LYP/6-31G** ………………………………………………………………………………………………………………………………………………………………94

(6-3) شکاف نواری و پتانسیل یونش محاسبه شده برای الیگومتیل­تیوفن­ها در سطح B3LYP/6-31G**………………………………………………………………………………………………………………………………………………….94

(6-4) شکاف نواری و پتانسیل یونش محاسبه شده برای الیگواتیل­تیوفن­ها در سطح B3LYP/6-31G**………………………………………………………………………………………………………………………………………………….

فهرست مطالب

فصل اول : مقدمه ………………………………………………………………………………………………………………………………. 1

فصل دوم : پليمرهاي رسانا

2-1-تعريف ……………………………………………………………………………………………………………………………………………5

2-2-تاريخچه ………………………………………………………………………………………………………………………………………. 6

2-3-تقويت پليمرهاي رسانا ……………………………………………………………………………………………………………….. 8

2 -3-1- مفهوم تقویت ……………………………………………………………………………………………………………………. 8

2-3-2- ماهیت مواد تقویت کننده …………………………………………………………………………………………………. 9

2-3-3- تقویت شیمیایی ………………………………………………………………………………………………………………… 9

2-3-4- تقویت الکتروشیمیایی ……………………………………………………………………………………………………. 11

2-3-5- برگشت پذیری ………………………………………………………………………………………………………………….11

2-4-روش­هاي تهیه پلیمر­های رسانا…………………………………………………………………………………………………. 12

2-4-1- پلیمر شدن شیمیایی ……………………………………………………………………………………………………… 12

2-4-2- پلیمر شدن الکتروشیمیایی ………………………………………………………………………………………………13

2-5 رسانایی پلیمر­های رسانا ……………………………………………………………………………………………………………. 14

2-5-1- نظریه نوار ………………………………………………………………………………………………………………………… 16

2-5-2- مکانیزم رسانایی پلیمر­های رسانا ……………………………………………………………………………………. 19

2-6-كاربردها ………………………………………………………………………………………………………………………………………20

2-6-1- باتری­های با قابلیت شارژ مجدد ……………………………………………………………………………………… 21

2-6-2- وسایل الکتروکرومیک …………………………………………………………………………………………………….. 21

2-6-3- کاربرد­های پزشکی ………………………………………………………………………………………………………….. 21

2-6-4-حسگر­ها ……………………………………………………………………………………………………………………………. 21

2-6-5- الکترود­های پلیمری ………………………………………………………………………………………………………… 21

2-6-6- انواع مواد هوشمند ………………………………………………………………………………………………………….. 22

2-7-معايب ومزايا ……………………………………………………………………………………………………………………………….22

فصل سوم : پلي(آلکیل­تيوفن)

3-1-تيوفن ………………………………………………………………………………………………………………………………………….24

3-2-پلي­تيوفن …………………………………………………………………………………………………………………………………….25

3-3- پیکربندی پلی­آلکیل­تیوفن­ها …………………………………………………………………………………………………… 25

3-4-مكانيزم الكتروپليمر شدن …………………………………………………………………………………………………………..27

3-4-1- روش شیمیایی ………………………………………………………………………………………………………………….27

3-4-1-1- روش مک­کالو………………………………………………………………………………………………………………. 28

3-4-1-2- روش ریک……………………………………………………………………………………………………………………..28

3-4-1-3- روش پلیمر شدن اکسایشی ……………………………………………………………………………………….. 29

3-4-2- روش الکتروشیمیایی ………………………………………………………………………………………………………..30

3-4- 2- 1- مکانیزم الکتروپلیمر شدن …………………………………………………………………………………….. 31

3- 4- 2- 2- اثر عوامل مختلف بر الکتروپلیمرشدن تیوفن ……………………………………………………….33

فصل چهارم: روش­های محاسباتی

4-1 –شیمی محاسباتی ……………………………………………………………………………………………………………………. 36

4-2-روش­های آغازین ………………………………………………………………………………………………………………………. 37

تقریب بورن اوپنهایمر ……………………………………………………………………………………………………………………….. 37

تقریب LCAO  …………………………………………………………………………………………………………………………………..38

تقریب هارتری – فاک ……………………………………………………………………………………………………………………….. 38

روش میدان خود سازگار ………………………………………………………………………………………………………………….. 38

برهم­کنش آرایشی ……………………………………………………………………………………………………………………………. 40

افزودن توابع قطبش پذیر ………………………………………………………………………………………………………………….. 49

افزودن توابع پخشی …………………………………………………………………………………………………………………………… 50

4–3 نظریه تابعی چگالی …………………………………………………………………………………………………………………. 41

4-4-مجموعه پایه …………………………………………………………………………………………………………………………….. 45

4-5- نرم­افزار­ها …………………………………………………………………………………………………………………………………. 50

4-5-1- هایپرکم …………………………………………………………………………………………………………………………… 51

4-5-2- گوس­ویو ………………………………………………………………………………………………………………………….. 51

4-5-3- گوسین ………………………………………………………………………………………………………………………………52

فصل پنجم : محاسبات و نتايج

5-1-بهينه سازي هندسه مولکول­ها …………………………………………………………………………………………………. 54

5-2-محاسبات مونومر­ها …………………………………………………………………………………………………………………… 56

5-3- محاسبات الیگومر­ها …………………………………………………………………………………………………………………. 60

5-3-1- محاسبات ساختاری..……………….……………………………………………………………………………………..62

5-3-2- محاسبات چگالی بار الکتریکی و چگالی اسپین ………………………………………………………………69

5-3-3- محاسبات الکترونی ……………………………………………………………………………………………………………70

فصل ششم: بحث و نتیجه­گیری

6-1- بررسی مونومر­ها ………………………………………………………………………………………………………………………. 74

6-2-بررسی الیگومر­ها ………………………………………………………………………………………………………………………. 81

6-2-1- آنالیز ساختاری…………………………………………………………………………………………………………………..83

6-2-2- توزیع بار و چگالی اسپین…………………………………………………………………………………………………..90

6-2-3- خواص الکترونی………………………………………………………………………………………………………………….93

آینده­نگری ………………………………………………………………………………………………………………………………………….. 99

منابع …………………………………………………………………………………………………………………………………………………101

 

فهرست شکل­ها

(2-1) الف: سيس-­پلي­استيلن، ب: ترانس- پلي­استيلن ………………………………………………………………………..7

(2-2) اثر غلظت تقويت کننده بر رسانایی پلیمر ……………………………………………………………………………….11

(2-3) مقايسه رسانايي مواد مختلف …………………………………………………………………………………………………..15

(2-4)رسانايي پليمر­هاي رساناي مختلف با مس مقايسه شده است ………………………………………………… 16

(2-5) نوارهاي انرژي در رسانا­ها، نيمه­رسانا­ها و نارسانا­ها ……………………………………………………………….. 17

(2-6) تغييرات زنجير پليمر در اثر تقويت ………………………………………………………………………………………….18

(2-7) در اثر تقويت شكاف نواري باريك­تر مي­شود ……………………………………………………………………………19

(2-8) ايجاد نوارهاي حد واسط در شكاف نواري پليمر­ها ………………………………………………………………… 20

(3-1) انواع دیمر­های احتمالی ………………………………………………………………………………………………………….. 26

(3-2) انواع آرایش تری­مر­ها در تشکیل تری­(آلکیل­تیوفن)………………………………………………………………. 26

(3-3) مکانیزم تولید پلی(آلکیل­تیوفن)……………………………………………………………………………………………….28

(3-4) مکانیزم تولید پلی­(آلکیل­تیوفن) ………………………………………………………………………………………………29

(3-5)مکانیزم روش پلیمر شدن اکسایشی در تولید پلی­(آلکیل­تیوفن) …………………………………………… 30

(5-1) نمایش و نامگذاری ایزومر­های 3- بوتیل­تیوفن ……………………………………………………………………….54

(5-2) نمایش نامگذاری 3-آلکیل­تیوفن ……………………………………………………………………………………………..56

(5-3) نامگذاری شده هگزا آلکیل­تیوفن ……………………………………………………………………………………………..62

(5-4) نامگذاری پیوند­های تریمر 3-آلکیل­تیوفن………………………………………………………………………………..67

(6-1) نمایش طول پیوند­های استخلاف حلقه (R48) در مونومر­های3- آلکیل­تیوفن در سطحB3LYP/6-31G** ……………………………………………………………………………………………………………………75

(6-2) نمایش تغییرات بار الکتریکی در موقعیت اتم (´α) C3  و اتم (α) C2 رادیکال کاتیون­ مونومر­های 3- آلکیل­تیوفن در سطح B3LYP/6-31G**.  ………………………………………………………………………………..77

(6-3) نمایش شکاف نواری مونومر­های 3-آلکیل تیوفن  در سطح HF/6-31G**…………………………78

(6-4) نمایش تغییرات پتانسیل یونش مونومر­های 3-آلکیل­تیوفن در سطح  B3LYP/6-31G**…79

(6-5) ساختار تریمر 3 – متیل تیوفن (الف) رادیکال کاتیون (ب) الیگومر خنثی……………………………81

(6-6) اندازه طول پیوند­های مزدوج در دیمر­های تیوفن، 3- متیل­تیوفن، 3 – اتیل­تیوفن و 3- پروپیل­تیوفن………………………………………………………………………………………………………………………………………….84

(6-7) اندازه طول پیوند­های مزدوج در تریمر­های تیوفن ، 3- متیل­تیوفن، 3 – اتیل­تیوفن، و 3- پروپیل­تیوفن………………………………………………………………………………………………………………………………………….85

(6-8) اندازه طول پیوند­های مزدوج در تترامر­های تیوفن، 3- متیل­تیوفن،3 – اتیل­تیوفن، و 3- پروپیل­تیوفن………………………………………………………………………………………………………………………………………….86

(6-9) اندازه طول پیوند­های مزدوج در پنتامر­های تیوفن ،3- متیل­تیوفن، 3 – اتیل­تیوفن و 3 – پروپیل­تیوفن………………………………………………………………………………………………………………………………………….87

(6-10 ) اندازه طول پیوند­های مزدوج در هگزامر­های تیوفن ، 3- متیل­تیوفن،3 – اتیل­تیوفن و 3 – پروپیل­تیوفن………………………………………………………………………………………………………………………………………….89

(6- 11) نمایش تغییرات بار الکتریکی اتم  C1 بر اساس افزایش طول زنجیر در الیگومر­های3 – آلکیل تیوفن ……………………………………………………………………………………………………………………………………………………92

(6-12) نمایش تغییرات شکاف نواری الیگومرها برحسب افزایش طول زنجیر الیگومر در سطح B3LYP/6-31G**  ……………………………………………………………………………………………………………………………96

(6-13) نمایش تغییرات IP الیگومر­های 3- آلکیل­تیوفن در سطح   B3LYP/6-31G** ……………..98

 

 

فهرست جداول

(4-1) نام، نوع و مخفف تعدادی از روش­های نظریه تابعی چگالی……………………………………………………..45

(5-1) مقایسه خواص ایزومر­های بوتیل­تیوفن……………………………………………………………………………………..55

(5-2) مقایسه خواص ایزومر­های بوتیل­تیوفن  …………………………………………………………………………………..55

(5-3) برخی از پارامتر­های ساختاری مونومر­ها در سطحB3LYP/6-31G**  ……………………………….. 57

جدول 5-4- بار الکتربکی (چگالی اسپین) 3- آلکیل­تیوفن­ها در سطح B3LYP/6-31G**. ……….. 58

(5-5) انرژی­های اوربیتالی  و شکاف نواری در سطح B3LYP/6-31G** ……………………………………… 59

(5-6) محاسبه انرژی الکترونی 3- آلکیل­تیوفن­ها در سطح B3LYP/6-31G** ……………………………..60

(5-7) محاسبه انرژی­های الکترونی سه ساختار متفاوت دیمر­های 3- متیل­تیوفن……………………………61

(5- 8) انرژی­های الکترونی دو ساختار متفاوت تریمر­های- آلکیل­تیوفن……………………………………………61

(5-9) مقادیر طول پیوند­های سیستم مزدوج الیگوتیوفن­ها در سطحB3LYP/6-31G**………………..63

(5-10) مقادیر طول پیوند­های سیستم مزدوج الیگومتیل­تیوفن­ها در سطح B3LYP/6-31G** ………………………………………………………………………………………………………………………………………………………………64

(5-12) مقادیر طول پیوند­های سیستم مزدوج الیگواتیل­تیوفن­ها در سطح B3LYP/6-31G**  …..65

(5-13) مقادیر طول پیوند­های سیستم مزدوج الیگوپروپیل­تیوفن­ها در سطح B3LYP/6-31G** ..66

(5-14) مقادیر زوایای دووجهی در الیگوتیوفن­ها در سطح B3LYP/6-31** ………………………………….67

(5-15) مقادیر زوایای دووجهی در الیگومتیل­تیوفن­ها در سطح  B3LYP/6-31**…………………………68

(5-16) مقادیر زوایای دووجهی در الیگواتیل­تیوفن­ها در سطح B3LYP/6-31** …………………………..68

(5-16) مقادیر زوایای دووجهی در الیگوپروپیل­تیوفن­ها در سطح B3LYP/6-31** ………………………68

(5-17)مقادیر بار الکتریکی (چگالی اسپین) الیگو تیوفن­ها در سطح B3LYP/6-31G** ………………69

(5-18) مقادیر بار الکتریکی (چگالی اسپین) الیگو متیل­تیوفن­ها در سطح B3LYP/6-31G** …….69

(5-19) مقادیر بار الکتریکی (چگالی اسپین) الیگو اتیل­تیوفن­ها در سطح B3LYP/6-31G** ………70

(5-20) مقادیر بار الکتریکی (چگالی اسپین) الیگو پروپیل­تیوفن­ها در سطح B3LYP/6-31G**…..70

(5-21) انرژی اوربیتال­های پیشانی الیگو تیوفن­ها در سطح B3LYP/6-31G** ……………………………71

(5-22) انرژی اوربیتال­های پیشانی الیگو متیل­تیوفن­ها در سطح B3LYP/6-31G** ……………………71

(5-23) انرژی اوربیتال­های پیشانی الیگو اتیل­تیوفن­ها در سطح B3LYP/6-31G** …………………….71

(5-24) انرژی اوربیتال­های پیشانی الیگو پروپیل­تیوفن­ها در سطح B3LYP/6-31G**………………….72

(5-25) انرژی الکترونی الیگوتیوفن­ها در سطح B3LYP/6-31G**…………………………………………………72

(5-26) انرژی الکترونی الیگومتیل­تیوفن­ها در سطح B3LYP/6-31G**…………………………………………72

(5-27) انرژی الکترونی الیگواتیل­تیوفن­ها در سطح B3LYP/6-31G** …………………………………………73

(5-28) انرژی الکترونی الیگوپروپیل­تیوفن­ها در سطح B3LYP/6-31G**……………………………………….73

(6-1) مقایسه شکاف نواری و پتانسیل یونش محاسبه شده برای مونومر­های 3- آلکیل­تیوفن در سطح B3LYP/6-31G**……………………………………………………………………………………………………………………………..77

(6-2) شکاف نواری و پتانسیل یونش محاسبه شده برای الیگوتیوفن­ها در سطحB3LYP/6-31G** ………………………………………………………………………………………………………………………………………………………………94

(6-3) شکاف نواری و پتانسیل یونش محاسبه شده برای الیگومتیل­تیوفن­ها در سطح B3LYP/6-31G**………………………………………………………………………………………………………………………………………………….94

(6-4) شکاف نواری و پتانسیل یونش محاسبه شده برای الیگواتیل­تیوفن­ها در سطح B3LYP/6-31G**………………………………………………………………………………………………………………………………………………….

پليمرها مولكولهاي بزرگي هستند كه از واحدهاي تكراري ساده تشكيل شده­اند. اين نام از يك نام يوناني به نام پلي[1] كه به معني چند تا و مر[2] كه به معني قسمت مي باشد مشتق شده است. ماكرومولكول[3] مترادف با پليمر مي باشد پليمرها از مولكول­هاي ساده­اي به نام مونومر[4] به معني قسمت واحد ساخته شده­اند. اگر تعداد كمي از مونومرها به هم متصل شوند پليمري با وزن مولكولی كم حاصل شده كه اليگومر[5] (كلمه يوناني oligos  يعني كم) ناميده مي شود‌ [1].

پليمرها انواع زياد و كاربردهاي بسيار گسترده­اي دارند و بسياري از جنبه هاي زندگي ما را پوشش داده­اند. از اين رو علم پليمر به صورت يك علم جذاب درآمده است و محققان فراواني در  سرتا­سر جهان در مورد روشهاي توليد ساده­تر  اقتصادي­تر و توليد پليمرهاي جديدتر با خواص بهتر و كاربردهاي به روزتر و بهينه­تر در تلاش هستند. دسته­اي از اين گروه مواد، پليمرهاي مزدوج[6] هستند. يك پليمر مزدوج در زنجير خود پيوند­هاي يگانه و دوگانه متناوب دارد و در حقيقت از يك مونومر غيراشباع پديد آمده است. تا حدود 40 سال پيش كسي تصور نمي­كرد كه يك پليمر يا پلاستيك بتواند رساناي جريان الكتريسته باشد و اساساً پليمرها جزء مواد نارسانا يا عايق[7] اند و حتي به عنوان پوشش هاي عايق الکتریکی كاربرد دارند. اما از اوايل دهه­ی هفتاد ميلادي كه پليمرهاي مزدوج توليد شدند، اين تصورات تغيير كرد. پليمرهاي مزدوج مي­توانند رسانا باشند و الكترون­ها را در طول زنجير خود جا به جا كنند. اين كشف شگفت انگيز شاخه جديدي را در دانش پليمر به نام پليمرهاي رساناي الكتريكي[8] ايجاد كرده است كه توجه دانشمندان زيادي را به خود جلب كرده است.

اگر چه رسانايي پليمرهاي مزدوج در حد فلزاتي چون نقره، مس و حتي آهن نيست، اما تلفيقي از خواص فلزي (رسانايي) و پليمري، اين مواد را هم از فلزات و هم از پليمرها متمايز و ممتاز كرده است. در حقيقت هر چند اين مواد به عنوان پليمرهاي رسانا شناخته مي­شوند  اما تنها خاصيت رسانايي آنها نيست كه آنها را مورد توجه قرار داده است. به عنوان مثال گفته مي­شود كه هزينه محافظت از خوردگي پل گلدن گيت[9] در سانفرانسيسكو سالانه 27 ميليارد دلار است. چنين      هزينه­هاي گزافي توجه به روش­هاي نوين، کم­هزينه و كارآمد­تر به جاي روش­هاي سنتي محافظت از خوردگي را بیشتر كرده است. يكي از اين روش­ها پوشش دهي فولاد با پلي مرهاي رسانا براي بهبود مقاومت به خوردگي است[2]. پليمرهاي مزدوج مجموعه­اي از خواص الكتريكي، خصوصيات پليمري نظير  انعطاف پذيري، چگالي كم، بهبود پذيري آسان ساختار و خواص نوري و ديگر ويژگي­هاي جالب توجه را دارا هستند[3]. چنين ويژگي­هايي است كه محققان را بر آن داشته است كه در جهت رفع برخي عيوب اين مواد نظير حلاليت كم و… و يا بهبود خواص مفيد آنها تلاش گسترده­اي انجام دهند. امروزه به دلیل آن که پليمرهاي مزدوج رسانايي قابل ملاحظه­اي دارند به آنها فلزات آلي[10] يا فلزات سنتزي[11] گفته مي­شود  و نقش آن­ها در صنايع، پزشكي و ساير امور زندگي غير قابل انكار است. اهميت اين مواد تا اندازه­اي است كه به آنها مواد قرن بيست و يكم گفته مي­شود[4].

[1] Poly

[2] mer

[3] macromolecule

[4] monomer

[5] Oligomer

[6] Conjugated Polymers

[7] Insulator

[8] Electrically Conductive Polymers

[9] Golden Gate Bridge

[10] Organic Metals

[11] Synthetic Metals

تعداد صفحه : 140

قیمت : 14700 تومان

———–

——-

پشتیبانی سایت :               serderehi@gmail.com

در صورتی که مشکلی با پرداخت آنلاین دارید می توانید مبلغ مورد نظر برای هر فایل را کارت به کارت کرده و فایل درخواستی و اطلاعات واریز را به ایمیل ما ارسال کنید تا فایل را از طریق ایمیل دریافت کنید.

--  --